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Abstract Migraine headache is triggered by and associ-

ated with a variety of hormonal, emotional, nutritional and

physiological changes. The perception of migraine head-

ache is formed when nociceptive signals originating in the

meninges are conveyed to the somatosensory cortex

through the trigeminal ganglion, medullary dorsal horn and

thalamus. We propose that different migraine triggers

activate a wide variety of brain areas that impinge on

parasympathetic neurons innervating the meninges.

According to this hypothesis, migraine triggers such as

stress activate multiple hypothalamic, limbic and cortical

areas, all of which contain neurons that project to the

preganglionic parasympathetic neurons in the superior

salivatory nucleus (SSN). The SSN, in turn, activates

postganglionic parasympathetic neurons in the sphenopal-

atine ganglion, resulting in vasodilation and local release of

inflammatory molecules that activate meningeal nocicep-

tors. We propose that trigeminovascular projections from

the medullary dorsal horn to selective areas in the mid-

brain, hypothalamus, amygdala and basal forebrain are

functionally positioned to produce migraine symptoms

such as irritability, loss of appetite, fatigue, depression and

the quest for solitude. The network of bidirectional traf-

ficking by which the trigeminovascular system can activate

the same brain areas that have triggered its own activity in

the first place provides an attractive mechanism of per-

petual feedback that drives a migraine attack for many

hours and even days.
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Introduction

Migraine is a recurring neurological disorder commonly

described as unilateral throbbing headache, readily aggra-

vated by routine activities. Similar to other pain pathways,

the sensory discriminative aspect of migraine pain is

believed to be mediated by activation and modulation of

nociceptive trigeminothalamic tract by peripheral drivers

and central modulators, respectively. In the case of the

trigeminothalamic tract, the role of driver is played by

meningeal nociceptors, whereas modulation is provided by

inhibitory and facilitatory neurons in the brainstem. Evi-

dence for the driving role of meningeal nociceptors comes

from studies in which awake patients experienced head-

ache in response to electrical stimulation of their dura [1,

2]. Evidence for descending modulation comes from

studies that examined the effects of electrical stimulation of

the periaqueductal gray (PAG) and rostral ventromedial

medulla on nociceptive spinal neurons. Whereas electrical

brainstem stimulation per se did not induce any activity in

the spinal nociceptive neurons when they were quiet, it

clearly increased or decreased their response magnitude to

noxious and innocuous stimulation of their cutaneous and

visceral receptive fields [3].

The initiation of migraine headache is commonly asso-

ciated with a wide variety of circumstances, such as hor-

monal milieu, periods of stress, post-stress periods,

skipping a meal, lack of sleep, olfactory stimulation and

several types of aura [4, 5]. These associations raise the

possibility that a migraine attack originates in brain areas

that are not directly involved in nociception, but are wired
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to activate the trigeminovascular pathway. The trigemino-

vascular pathway consists of first-order nociceptors in the

trigeminal ganglion that innervate the meninges; second-

order trigeminothalamic tract neurons that receive sensory

inputs from the meninges, periorbital skin and neck mus-

cles; third-order thalamocortical neurons that process

incoming pain signals from the trigeminal nerve, including

the meninges; and cortical neurons located in the first

somatosensory cortex.

Activation of the trigeminovascular pathway

by the limbic system and hypothalamus

The observation that visual aura precedes the onset of

headache by several minutes promoted extensive research

on the neural substrate by which cortical spreading

depression can result in activation of meningeal nocicep-

tors. Evidence suggests that in the wake of cortical

spreading, depression the blood brain barrier becomes

more permeable [6, 7], allowing potassium and hydrogen

ions to diffuse from the surface of the cortex to the pia

where they activate C-fiber meningeal nociceptors [8]. This

activation appears to involve direct depolarization by

potassium ions, and action of hydrogen ions through the

vallinoid receptor (Caterina et al. 1997) or the acid-sensi-

tive ion channel receptor (Waldmann et al. 1997). Conse-

quently, the activated meningeal nociceptors release

calcitonin-gene-related peptide [9] from their peripheral

branches, resulting in neurogenic inflammation in the dura

[10].

In contrast to the ongoing effort, to understand how aura

triggers activity in meningeal nociceptors, little attention

was given to the mechanisms by which brain areas

involved in regulation of stress could activate meningeal

nociceptors and trigger the headache. Is there a common

pathway that activates meningeal nociceptors for a variety

of migraine triggers? We are proposing that such a pathway

involves pre- and postganglionic parasympathetic neuron

in the superior salivatory nucleus (SSN) and sphenopala-

tine ganglion (SPG), respectively. According to our

hypothesis, migraine triggers either activate or originate in

a number of brain areas whose projections converge on the

SSN. The SSN, in turn, stimulates the release of acetyl

choline, vasopressin intestinal peptide and nitric oxide

from meningeal terminals of SPG neurons, resulting

(directly or indirectly) in a cascade of events that include

the dilation of intracranial blood vessels, plasma protein

Fig. 1 A proposed parasympathetic pathway for the activation of

meningeal nociceptors. Preganglionic parasympathetic neurons in the

superior salivatory nucleus (SSN) can trigger intracranial vasodilation

and the release of nitric oxide in the meninges through postganglionic

parasympathetic neurons in the sphenopalatine ganglion (SPG). a The

SSN receives input from over 50 limbic and hypothalamic brain areas

(red dots) whose activity may be influenced by common migraine

triggers. b Examples of SSN afferents proposed to be involved in

migraine triggering by olfactory stimuli (Pir), food and sleep

deprivation (LH), stress or post stress (PVN, BNST, PAG). BNST
bed nucleus stria terminalis, LH lateral hypothalamus, PAG periaqu-

eductal gray, Pir piriform cortex, PVN paraventricular hypothalamic

nucleus
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extravasation, and local release of inflammatory molecules

that activate adjacent terminals of meningeal nociceptors

(Fig. 1).

Several lines of evidence support this parasympathetic

hypothesis: (1) meningeal blood vessels are densely

innervated by parasympathetic fibers [11–13]; (2) pregan-

glionic parasympathetic neurons in the SSN increase their

activity after activation of meningeal nociceptors [14]; (3)

ongoing activity in meningeal nociceptors appears to

depend on enhanced activity in the SPG [15]; (4) para-

sympathetic tone is enhanced during migraine, as evi-

denced by lacrimation, teary eyes, nasal congestion [5]; (5)

blockade of the SPG provides partial or complete relief of

migraine pain [16–25].

The SSN receives extensive input from more than 50

brain areas distributed throughout the forebrain, dien-

cephalon, midbrain, pons and medulla [26]. SSN-project-

ing neurons located in some of these brain areas are

theoretically positioned to mediate the onset of a migraine

by means of their involvement in emotional responses

(Fig. 1a). The bed nucleus of stria terminalis (BNST), the

paraventricular hypothalamic nucleus (PVN) and the PAG

are all involved in the circuitry that regulates ‘‘stress

response’’. BNST neurons, which regulate hypothalamic-

pituitary-adrenal axis, appear to mediate long-lasting

behavioral responses during sustained stress, which persist

long after the termination of stress [27, 28]; such neurons

may be involved in stress-induced migraine and also

in migraine triggered after the termination of stress.

Parvocellular PVN neurons that project to sympathetic and

parasympathetic preganglionic neurons in the brainstem

and spinal cord promote the autonomic part of the stress

response [29, 30], which includes localized cerebrovascular

vasodilation in the early phase of the migraine attack [31].

Ventrolateral PAG neurons involved in passive emotional

coping with inescapable stressors such as repeated defeat in

social encounters [32, 33] may mediate onset of increase

migraine frequency associated with a long period of social

stress such as divorce.

Activation of the hypothalamus and limbic system by

the trigeminovascular pathway

The most frequently reported symptoms associated with

migraine are depression, stress, irritability, fatigue, sleepi-

ness, exaggerated emotional responses, nausea and loss of

appetite. To elicit these symptoms, pain signals that orig-

inate in the trigeminovascular pathway during migraine

must reach and alter the activity of hypothalamic and

limbic structures that integrate sensory, physiological

and cognitive signals that drive behavioral, affective and

autonomic responses. Brain areas involved in the execution

of such responses include the parabrachial complex, PAG,

hypothalamus, amygdala, septum, nucleus accumbens, bed

nucleus of the stria terminalis and basal ganglia [34–46].

Many of these brain areas receive direct inputs from lam-

inae I–II and V neurons located in the ventrolateral area of

Fig. 2 Proposed mechanism for

the initiation of symptoms

commonly associated with

migraine headache by ascending

trigeminovascular pathways to

the brainstem, hypothalamus

and basal ganglia.

a Trigeminovascular neurons in

the spinal trigeminal nucleus

(SpV) project to multiple limbic

and hypothalamic brain areas

(red dots) whose activity my

underlie common migraine

symptoms. b Examples of SpV

projections proposed to be

involved in stress (PVN),

decreased motivational state

(VP/SI), pursuit of solitude

(PAG), sleepiness, irritability

and loss of appetite (LH).

LH lateral hypothalamus,

PAG periaqueductal gray,

PVN paraventricular

hypothalamic nucleus, VP/SI
ventral pallidum/substantia

innominata
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the upper cervical and medullary dorsal horn (Fig. 2)—an

area containing the majority of second-order trigemino-

vascular neurons [47–56].

We propose that these ascending pathways are func-

tionally positioned to produce irritability, loss of appetite,

sleepiness, fatigue, chill, stress, depression, emotional

arousal, decreased motivation, the quest for solitude and

lethargy during migraine (Fig. 2b). For example, loss of

appetite, sleepiness and irritability during migraine may be

mediated by trigeminovascular projections to the lateral

hypothalamus; in this area, neurons expressing melanin-

concentrating hormone or hypocretin regulate food and

water intake, sleep and arousal [36, 37, 57] through

widespread projections to the cerebral cortex, brainstem

and spinal cord [58–62]. Migraine-associated stress may be

mediated by trigeminovascular projections to the para-

ventricular nucleus of the hypothalamus; this nucleus

contains neurons expressing corticotrophin-releasing hor-

mone and oxytocin which regulate stress responses [63].

Emotional arousal and decreased motivation during

migraine may be mediated by trigeminovascular projec-

tions to forebrain nuclei such as the ventral pallidum and

substantia innominata; these areas can alter endocrine,

autonomic and somatomotor functions to match different

emotional and motivational states [64].

The pursuit of solitude during migraine may be medi-

ated by the ventrolateral PAG; this area receives more

input from trigeminal neurons locate in C1-3 and nucleus

caudalis than from the entire spinal cord [32, 54, 55]. The

input to the ventrolateral PAG originates mainly in visceral

and deep somatic tissues [65, 66]. Trigeminovascular

projections to the ventrolateral PAG can activate neurons

that mediate responses to deep, inescapable pain, such

migraine pain [32, 67].
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